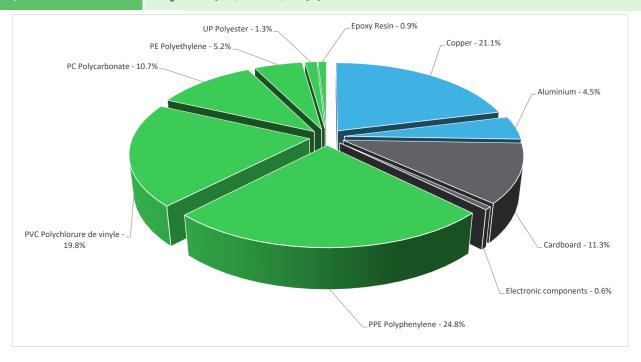

Product Environmental Profile

CT Rogowski 900mm coil UL2808 5000A



General information

Reference product	CT Rogowski 900mm coil UL2808 5000A - METSECTR90500U
Description of the product	The CTRx Series of Rogowski flexible rope style Current Transformers (CTs) provide secondary AC voltage proportional to the primary (sensed) current and reinforced insulation between the sensed conductor and the output leads.
Description of the range	Single product
Functional unit	The CTRx Series CTs provide a cost-effective means to transform electrical service amperages to a voltage compatible with monitoring equipment. These are available from 300 mm to 900 mm in length operating in a current range of 50 to 5000 A.
Specifications are:	Current Range: 50 to 5000 A Frequency: 50/60 Hz Pollution degree: 2 IP65 Degree of protection in accordance with the standard IEC 60529

Constituent materials

Reference product mass 213.2 g including the product, its packaging and additional elements and accessories

 Plastics
 62.70%

 Metals
 25.60%

 Others
 11.90%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(19) Additional environmental information

End Of Life

Recyclability potential:

30%

The recyclability rate was calculated from the recycling rates of each material making up the product with the exception of data using the ESR database. For materials or components using the ESR database or the absence of data the conservative hypothesis "0% recyclability" was used.

Tenvironmental impacts

Reference service life time	20 years										
Product category	Other equipments - Passive product - continuous operation										
Installation elements	This product does not require any installation open	This product does not require any installation operations.									
Time representativeness	The collected data are representative of the year	r 2024									
Technological representativeness		The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.									
Geographical representativeness	Rest of the World										
	[A1 - A3]	[A5]	[B6]	[C1 - C4]							
Energy model used	Electricity Mix; High voltage; 2018; Italy, IT	N/A	N/A	N/A							

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneiderelectric.com/contact

Mandatory Indicators	CT Rogowski 900mm coil UL2808 5000A - METSECTR90500U							
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	2.41E+00	1.75E+00	5.51E-02	5.55E-02	0*	5.51E-01	-3.17E-01
Contribution to climate change-fossil	kg CO2 eq	2.35E+00	1.70E+00	5.51E-02	5.55E-02	0*	5.37E-01	-3.00E-01
Contribution to climate change-biogenic	kg CO2 eq	6.24E-02	4.91E-02	0*	0*	0*	1.33E-02	-1.67E-02
Contribution to climate change-land use and land use change	kg CO2 eq	4.72E-05	4.70E-05	0*	0*	0*	2.03E-07	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	2.19E-07	2.09E-07	8.44E-11	8.52E-11	0*	9.83E-09	-6.33E-08
Contribution to acidification	mol H+ eq	2.30E-02	2.08E-02	3.49E-04	2.54E-05	0*	1.86E-03	-1.10E-02
Contribution to eutrophication, freshwater	kg (PO4)³- eq	4.46E-04	6.31E-05	0*	0*	0*	3.83E-04	-8.52E-07
Contribution to eutrophication marine	kg N eq	2.04E-03	1.56E-03	1.64E-04	9.85E-06	0*	3.13E-04	-2.44E-04
Contribution to eutrophication, terrestrial	mol N eq	2.27E-02	1.69E-02	1.79E-03	1.17E-04	0*	3.95E-03	-2.79E-03
Contribution to photochemical ozone formation - human health	kg COVNM eq	7.69E-03	6.26E-03	4.52E-04	2.49E-05	0*	9.50E-04	-1.46E-03
Contribution to resource use, minerals and metals	kg Sb eq	1.22E-04	1.10E-04	0*	0*	0*	1.21E-05	-7.85E-05
Contribution to resource use, fossils	MJ	3.90E+01	3.56E+01	7.68E-01	2.79E-02	0*	2.65E+00	-4.52E+00
Contribution to water use	m3 eq	2.79E+00	2.42E+00	0*	7.68E-03	0*	3.63E-01	-5.00E-01

Inventory flows Indicators		CT Rogowski 900mm coil UL2808 5000A - METSECTR90500U							
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	1.31E+00	1.00E+00	1.03E-03	2.79E-04	0*	3.01E-01	-3.58E-01	
Contribution to use of renewable primary energy resources used as raw material	MJ	6.62E-01	6.62E-01	0*	0*	0*	0*	0.00E+00	
Contribution to total use of renewable primary energy resources	MJ	1.97E+00	1.67E+00	1.03E-03	2.79E-04	0*	3.01E-01	-3.58E-01	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	3.30E+01	2.96E+01	7.68E-01	2.79E-02	0*	2.65E+00	-4.52E+00	
Contribution to use of non renewable primary energy resources used as raw material	MJ	6.02E+00	6.02E+00	0*	0*	0*	0*	0.00E+00	
Contribution to total use of non-renewable primary energy resources	MJ	3.90E+01	3.56E+01	7.68E-01	2.79E-02	0*	2.65E+00	-4.52E+00	
Contribution to use of secondary material	kg	4.27E-07	4.27E-07	0*	0*	0*	0*	0.00E+00	
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to net use of freshwater	m³	6.56E-02	5.70E-02	0*	1.79E-04	0*	8.44E-03	-1.16E-02	
Contribution to hazardous waste disposed	kg	8.69E+00	8.69E+00	0*	0*	0*	1.70E-03	-7.23E+00	
Contribution to non hazardous waste disposed	kg	2.47E+00	2.13E+00	1.93E-03	5.02E-02	0*	2.81E-01	-3.08E-01	
Contribution to radioactive waste disposed	kg	9.29E-04	8.87E-04	1.38E-06	6.16E-07	0*	3.96E-05	-2.47E-04	
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to materials for recycling	kg	8.20E-02	1.07E-02	0*	0*	0*	7.13E-02	0.00E+00	
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to exported energy	MJ	8.16E-04	1.11E-04	0*	0*	0*	7.05E-04	0.00E+00	

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0.00E+00

Contribution to biogenic carbon content of the associated packaging kg of C 6.72E-03

Impact indicators Unit [B1 - B7] - Use [B1] [B2] [B3] [B4] [B5] [B6] [B7] contribution to climate change	Mandatory Indicators					900mm co	oil UL28	08 5000A	- METSECTR9	0500U
contribution to climate change-fossil kg CO2 eq 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
contribution to climate change-biogenic kg CO2 eq 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	ontribution to climate change	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to climate change-land use and land use change kg CO2 eq 0^*	ontribution to climate change-fossil	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
contribution to ozone depletion $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	ontribution to climate change-biogenic	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
contribution to acidification $\operatorname{mol} H+\operatorname{eq} = 0^* =$	ontribution to climate change-land use and land use change	je kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
contribution to eutrophication, freshwater $kg (PO4)^{3^{-}} eq$ 0^{+} $0^{$	ontribution to ozone depletion	-	0*	0*	0*	0*	0*	0*	0*	0*
contribution to eutrophication, reshwater (PO4)s eq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ontribution to acidification	mol H+ eq	0*	0*	0*	0*	0*	0*	0*	0*
contribution to eutrophication, terrestrial mol N eq 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	ontribution to eutrophication, freshwater		0*	0*	0*	0*	0*	0*	0*	0*
contribution to photochemical ozone formation - human kg COVNM 0* 0* 0* 0* 0* 0* 0* 0*	ontribution to eutrophication marine	kg N eq	0*	0*	0*	0*	0*	0*	0*	0*
	ontribution to eutrophication, terrestrial	mol N eq	0*	0*	0*	0*	0*	0*	0*	0*
eq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ontribution to photochemical ozone formation - human ealth		0*	0*	0*	0*	0*	0*	0*	0*
contribution to resource use, minerals and metals kg Sb eq 0* 0* 0* 0* 0* 0* 0* 0* 0*	ontribution to resource use, minerals and metals	kg Sb eq	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to resource use, fossils MJ 0^* 0^* 0^* 0^* 0^* 0^* 0^* 0^*	ontribution to resource use, fossils	MJ	0*	0*	0*	0*	0*	0*	0*	0*
contribution to water use m3 eq 0* 0* 0* 0* 0* 0* 0* 0* 0*	ontribution to water use	m3 eq	0*	0*	0*	0*	0*	0*	0*	0*

Inventory flows Indicators		CT Rogowski 900mm coil UL2808 5000A - METSECTR90500U							
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to hazardous waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to non hazardous waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to radioactive waste disposed	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2, database version 2023-02 in compliance with ISO14044, EF 3.0 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2408025_V1	Drafting rules	PCR-4-ed4-EN-2021 09 06							
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08							
Date of issue	08-2024	Information and reference documents www.pe								
		Validity period	5 years							
Independent verification of the de	Independent verification of the declaration and data, in compliance with ISO 14021 : 2016									
Internal X External										
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)										
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022										
The components of the present PEP may not be compared with components from any other program.										
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"										

